JOURNAL OF ENGINEERING PHYSICS

421

THERMAL CALCULATION OF A MULTISECTIONAL FURNACE FOR FLUIDIZED

ENDOTHERMIC CALCINATION

V. M. Dement'ev
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UDC 66.045.2.046.4

A method of over-all thermal calculation of a multi-sectional furnace
with heating and cooling sections for fluidized endothermic calcina-
tion of loose materials is described.

Methods of calculation of multistage fluidized-bed
heat exchangers have been given in [1-3]. In [4] a
method of combined calculation for a multistage heat
exhanger (heating zones) and a calcination zone was
considered. A heat-engineering analysis of an aggre-
gate containing heating, calcination, and cooling sec-
tions was attempted in [5]. However, an over-all me-
thod of thermal calculation of a multisectional furnace
{with heating, calcination, and cooling sections) has
not yet been devised.

We consider a multisectional furnace for fluidized
endothermic calcination with n — 1 heating sections,

a calcination section, and m — 1 cooling sections
(Fig. 1).

We regard each section as a mixing heat exchanger,
i.e., we assume that the temperatures of the gases
and solid material on leaving the layer are the same.
Then the heat balance equation of the n-th section is

Vch(t”_l — ) Ngur = GC' (, — fn.1), (1)

where

e fy — Men _2q
¢ =gt ) (e 20
is the reduced specific heat of the raw material in the
case of total heat consumption on endo- and exothermic
processes in the temperature range f)—t;. In the case
where the thermal processes are completed at ty (i.e.,
in the first heating section in the path of the gases) Zq
refers to the difference t; —ty. The error due to such
averaging is not too large for engineering require-
ments if the heat is sufficiently well utilized (which,
of course, is our aim).

The heat balance equation of the calcination section
is

V@ _Kngl + LGt ) ngyr= G [C' (¢, — 1) +ql. (2)

The values of C' and q are substituted into Eq. (2)
according to where the heat consumption is concen-
trated (or dispersed). If the heat is consumed in the
temperature range (—t), C' is substituted from the
formula given above and ¢ is eliminated from Eq. (2).

When q is consumed in the range (t,—t,) q is again
eliminated from (2) and

C = E(l — 1Ny /100)Cy.

The same value of C' is substituted into (2) in the
case of isothermic consumption of heat in the calcina-
tion section at t; and q remains in (2).

Air

Fig. 1. Diagram of multisectional

fluosolids furnace: a)n — 1heating

sections; b) caleination; c) m — 1
cooling sections.

The heat balance equation of the m-th cooling sec-
tion is
VLCa (tm - tm+1) = GC]JI (tm—l — m) Nsur - (3)

We write the reduced equations in the form
been determined)

( v ) __C ti—t
\ G n ch”lsur Z(n—l - tn
(V/G), = [C'(t, —15) + qIAQ — KCyty + LCyt, ) gy (48)

(_l/__ ) — Cpl‘ Nsur Lia—1t, (4b)
G m LCa tn —lpn ,

. (4)

Assuming C'/KCgngyyr = const and (V/G)y = const,
for a given n we can write from (4)

i2 - t:z

tl - t2

L el ek S O (5)
t,— 1ty ¢ '

From this expression with a known t; (determined
by the particular technological process) and a pre-
scribed {; we determine the temperature Xy for any n.

Multiplying all of relations (5), of which there will
obviously be n — 1, we obtain

VX7t = (b, — Ity — 1),
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Fig. 2. Nomogram of approximate solution of equation Cx? -
—(C+ 1)x71 +1 = 0. The figures on the curves are the values
of n.
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Fig. 3. Nomogram for calculation of a multisec-

tional fluosolids furnace: 1) from. (4a) with ty¢ =,

= 0; 2) from (4a) with ty = 0; 3) from 4') for a
given n; 4) from 4b') for a given m.
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On multiplication, beginning with the second sim-
plex, we find

1/Xm=2 = (¢, — t)/(ty — t5). (6)

A similar expression can be obtained for the sub-
sequent sections and, finally, beginning from the n-th

1/Xn~—n. = 1. (6V)
Addition of the reciprocals of the found values, begin-
ning with second, gives
X2 f X e | = (ty, — t ), — 1), (M)
Substituting the values of ty — t) from (6) and putting

C= (f‘z“ to)/(tl - tz),

we obtain
CXP=1 (X" + XP—=3 . 1) = 0. (8)

The expression in the brackets is the sum of the
terms of a geometric progression. After transforma-
tions we obtain

CX?—(C+ 1) X1 +1=0. 9)

This equation was analyzed in [4]. Figure 2 gives
the nomogram for its solution. Using the nomogram
with a known t; and a prescribed t, (after C has been
determined) we find for any n the value of Xy and then
from (4) we determine the specific gas flow

(%) __c L )
G/, Cgﬂsut Xn

A similar solution is possible for the cooling sec-
tions. Assuming

Cpr Mour/LCy = const,  (V/G),, = const
“for a given m, we can write from (4b)

fl‘_t‘z
tz"ta

ty—t to_ ot
=bTh el x (19
t;— 1

Equating the reciprocals

bt _hmh et 1
t, — 1y ty—1, Ly — b X

we reduce the problem to the preceding one and obtain
the same equation

CXm —(C 4+ 1) Xm' 4+ 1 = 0. (9')

Using the same nomogram in Fig. 2 with known t;
and prescribed t,, (after C has been determined) we
tind for any m the value of Xy, and then from (4b) we
determine the specific gas flow

Vo CprTlsur
= ZPSL 4b'
(G ) e, " #

n

Thus, for prescribed values of t, and t;; we can
determine the specific gas flows for the heating and
cooling sections:
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Similarly, for the first (calcination) section we can
write

(V/G), = f1 {4y, tye) (14)

For a given furnace with fixed n and m we obviously
have the equality

V/G), = (V/G), = (V/G),,.

Then (12), (13), and (14) can be regarded as a system
of three equations with three unknowns, V/G, ty, and
tye-

We solve this equation graphically, since relations
(12) and (13) have already been obtained graphically
by means of a nomogram (Fig, 2) by the method of
successive approximations. For this purpose we unite
the two quadrants with axes V/G and t,, and V/G and
tyg, along V/G, as shown in Fig. 3. In the right quad-
rant we draw the curve from Eq. (4a) with t,o =0
and in the left quadrant we draw the curve from the
same equation with t, = 0. The two curves must ob-
viously originate from point a, where t, =ty,c = 0. In
the right quadrant we then draw the curve from Eq.
(4b) corresponding to its own m. This completes the
construction of the calculation nomogram.

On analyzing the nomogram we note that in the right
quadrant the point b of intersection of (4) and (4a) for
tye = 0 gives the values 108t ang (V/G);lmlC in the ab-
sence of cooling sections. Similarly, the point ¢ of
intersection of the curves (4b) and (4a) for ty = 0
gives the values thg = and (V/G)glllt in the absence of
heating sections. In the case of the presence of both
heating and cooling sections their mutual effect must
obviously be taken into account.

We first consider the left quadrant. The point ¢
gives the value of té%lt. We introduce a correction for
tlz%lt in Eq. (#a) for the right quadrant. This "lowers"
the line a-d and it occupies the position a'-d. The
point ¢' can be found graphically by producing the line
ca' parallel to the x axis until it cuts the y axis.

The new position of the line &'-d on intersection
with the curve (4') gives the new position of the point
b'. This reduces the flow of gas (ordinate of point b')
and, accordingly, of air; this alters the conditions in
the cooling section and at the same V/G point h ap-
pears on the curve (4b). The new value of ty¢ cor-
responds on the curve (4a) at t5 = 0 to point ¢'. Intro-
ducing the correction in correspondence with this point
in Eq. (4a) we obtain the point a", we produce the line
a"-d, we obtain the new position of the point b", then
h, ¢", and so on.

Two, three, and sometimes four repetitions of this
"circuit" enable us to determine sufficiently accurately
the final position of the points b and h, corresponding
to the required values of ty, t,,, and V/G.

From these data from the heat balance of the n heat-
ing sections

(L) _C t,— 1,

G n chnsur tl - tn

we determine the temperature of ther last, n~th section
(i.e., the emergent gases}
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(04 ty—1,
chnsur V/G

t, =t —

or any preceding section

o Iy —ty
b =t4— T ra
KCqnur ViG
C Lt

t—p = t—
n—2 1 chnsur V/G
It is worthwhile to perform such a calculation as

a check from the last section ty fo ty. Disagreement
between the obtained value of t; and that found graphi-
cally from the nomogram in Fig. 3 indicates an error
in the constructions or calculations.

If there are no errors there will be complete coin-
cidence and the correctness of the calculations and
constructions will be verified.

From the heat balance equation of the m cooling

sections
(L) — Cprteur. it
G m Lca t2 - to

we determine

Vv LC
tm:tl__G_ 2 (2 — 1)
Cprrlsur
and then to t,¢
1% LC
Z‘m—l =t— ? C 2 (f2 - tm)’
prilsur
14 LC. :
by = b — < & (ty —tu—)
prMisur

We consider the solution for prescribed n and m.

For a choice of optimum furnace parameters the
position for different n and m must be analyzed. To
perform such an analysis we have drawn the family of
curves (4) for n in the right quadrant of the nomogram
in Fig. 3 and the family of curves (4b) for m in the
left quadrant. For any n and m the solutions are ident-
ical to that described.

Such a solution for different n and m enables us to
find the relation ‘

ViG=f(n, m), (15)

whose value allows an approach to the assessment of
the energy consumption of the aggregate and a choice
of the optimum number of sections in the furnace. The
graphically found relation (15) determines the fuel
(heat) consumption for the process. With increase in n
and m the specific heat consumption will decrease but
in this case the consumption of electrical power on
compression of the blast will increase. Hence, with
increase in the number of sections there will be an
energy optimum at which further increase in n and m
will lead to an increase in the total power consumption
(fuel plus electricity).

We define the specific electric power consumption
per unit production as

v LyH

(n, m)

E= — Sl (16)
G 103nb

)
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where
SH=Hy+H, +~H,(n—1)+H, (m—1).

The total power consumption will then be

2Q=%QF+ETL—. an

Since relation (15) is found graphically, the results
of the calculations from (16) and (17) can best be rep-
resented on a graph, which gives a clear picture of the
position of the power optimum.

It should be noted that the technical and economic
optimum will have a slightly smaller number of sec-
tions than the power optimum, since the provision of
extra sections will make the construction more ex-
pensive and complicate the operation of the furnace.
Moreover, the choice of the number of sections may
be affected by several additional factors, the required
smoke temperature before gas cleaning, the possibil-
ity or necessity of discharging the hot product, and so
on. All these additional factors can be adequately
assessed only in specific plant conditions. Yet the
power optimum is still the dominant factor. As an il-
lustration of this we will consider a specific case.

Example of calculation. We have to determine the
optimum number of sections of a multisectional fluo-
solids furnace for the calcination of cement clinker
with the following initial data:

E=16, Nen=106%, nur=1095 n,=75%,
Ny =24.6%, 4 =1450°C, #,=0, C;=Cp =
=0.96 kJ/kg-deg, Cg=1.46 kJ/kg- deg,
C,=1.25 kI /kg - deg,
Qp=235500 kJ/nm?, ¢=1750 kJ/kg, Ka—i1=11.56,
Lo—ii = 10.56, W =13%,
H,= 4900N/m?% H, = 14700N/m% H, =H,, = 6850N/m?.

In the calculation of clinker the main heat consump-
tion occurs in the temperature range t,—t; and, hence,
we will introduce g into the effective specific heat.

The calculation nomogram constructed from rela-
tionships (4), (4a), and (4b) by means of the nomo-
gram in Fig. 2 and for prescribed t; and tyc is shown
in Fig. 4. The values of V/G found from it for values
of n and m from 1 to 10 are shown in the form or re-
lationship (15) on the graph in Fig. 5. On the same
graph we have plotted the values of the specific electric
power consumption found from formula (16) and also
the curves of the total power consumption from rela-
tionship (17).

As the graph in Fig. 5 reveals, the minimum power
consumption for our case is attained when n = 4 and
m =5 (a4-1-4 scheme, i.e., four heating sections,
one calcination section, and four cooling sections). But
the technical and economic optimum, as mentioned
above, must lie a little "to the left" (i.e., the number
of sections must be fewer). In addition, the tempera-
ture of the emergent gases in a 4-1-4 scheme is 60° C,
which will create difficult conditions for gas cleaning
(adhesion to dust due to the "shift" of the dew point
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Fig. 4. Nomogram for calculation of a multisectional fluosolids clinker-
ing furnace. The figures on the right of the curves are the values of n
and those on the left are the values of m.
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Fig. 5. Consumption of heat Q, kJ/kg and electric power E,

kJ /kg by a fluosolids clinkering furnace (working point m =

=4, n=4; 3-1-3 scheme; n — 1 is the number of heating

sections; m — 1 is the number of cooling sections): I) for E;

) for Q; HI) ZE + Q; the figures on the curves are the values
of m.



426

for gas cleaning). Hence, it will presumably be better

to have a 3-1-3 scheme. The temperature of the emer~
gent gases will be 125° C and of the emergent material

will be 168° C.

The specific power consumption in the work of a
seven-section 3-1-3 furnace is 3770 kJ /kg of heat and
86.4 kJ/kg of electric power. The total power con-
sumption from relationship (17) with due allowance
for the efficiency of the electric power station is 4120
kJ /kg.

The points corresponding to this position (n = 4 and
m = 4) are marked on the graph in Figs. 4 and 5.

NOTATION

V, G is the hourly flow of gas (fuel) and final prod-
uct, nm%hr, kg/hr; K, L are the yield of combustion
products and air flow per nm?® of gas (fuel), m 1¥/nm?;
Ca» Cg, Cy, Cpr is the specific heats of air, gases,
raw material, and final product, kd /nm?® deg, kJ/
/kg * deg; q is the heat consumption on thermal proc-
ess per kg of final product, kd/kg; £ is the raw mate-
rial consumption coefficient; ngyp is the percentage en-
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trainment from top section; ngyr is the coefficient of
heat loss to surroundings; np, ng is the efficiencies of
blower and electric power station; Qy is the calorific
value of the gas (fuel, kJ/nm®; ty, ty, tn, tyc, tm are
the temperatures of first, second, n-th, second cool-
ing, and m-th sections, deg; E is the specific electric
power consumption, kJ/kg; Hy, H;, Hy, Hy, are the
head losses on supply lines, on first section, on heat-
ing sections, and on cooling sections, N/m?,

REFERENCES

1. R. Rose and G. Winterstein, Chemische Technik,
13, no. 11, 1961.
P. Baskakov, IFZh, 6, no. 1, 1963.
. Tamarin, IFZh, 7, no. 4, 1964.
M. Dement'ev, I¥FZh, 2, no. 12, 1959.
. G. El'perin and V. A. Minkov, IFZh, 6, no.
11, 1963.

14 June 1966 Institute of Ferrous Metallurgy,

Donetsk



